
Customizing Deep Learning Models
for Code-Related Tasks

Università
della
Svizzera
italiana

Software
Institute

ICSME’24
Flagstaff

DEVELOPER-DRIVEN
CUSTOMIZATION

DROP ME A LINE

Funded by:

Alessandro
Giagnorio

CONTEXT-DRIVEN
CUSTOMIZATION

LLMs have a GENERAL KNOWLEDGE of SE tasks

Our mission

Current situation

What’s next

Aligning LLMs to developers through RLHF Better prompting techniques for improving LLMs

LLMs works better on HIGH-RESOURCE languages

We observed that in-context learning techniques
can significantly enhance the performance of LLMs
when applied to low-resource programming
languages. Therefore, we intend to pursue this
path by developing novel prompting techniques
for LLMs and investigating state-of-the-art
methodologies, such as Chain-of-Thought
prompting.

Modern LLMs are often evaluated on tasks that require a general
understanding of programming. Although the performance of these
models has improved over time, these results do not extend to their
usage on private projects, where these models frequently fail to
provide accurate recommendations. Indeed, LLMs are not tailored to
the specific consumer who uses them and thus lack knowledge of the
developers' expertise and the projects on which they are working.

LLMs are typically trained on publicly available code, such as GitHub
repositories, therefore favoring the most popular programming
languages. The following graph compares the distribution of GitHub
repositories with at least 10 stars across different programming
languages.

We started with investigating the performance gap between high-
and low-resource languages on state-of-the-art code models. We
observed that some niche languages, like R and Racket, perform
significantly worse on the same task than high-resource languages.
Therefore, we evaluated several fine-tuning and prompting
techniques to improve LLMs' code generation capabilities on these
low-resource languages. Our findings reveal that fine-tuning
smaller models (~1B parameters) on additional high-quality data
improves code generation performance. Conversely, larger models
(≥33B parameters) benefit more from including extra features into
the instruction prompt.

N. PARAMETERS

1 BILLION 7 BILLION >33 BILLION

Fine-tuning Mixed Prompting

371k 135k 16k 16k 6k 1k

N. REPOSITORIES

Racket repos are
nearly nonexistent

Although fine-tuning can help to personalize LLMs,
more effective and efficient techniques for
aligning code models with developer knowledge
and expertise should be investigated. To this end,
we intend to explore reinforcement learning
techniques, which are commonly used for aligning
models in NLP tasks.

 ORGANIZATION-SPECIFIC

7 14 21 28 35

AVG. ACCURACY

 DEVELOPER-SPECIFIC

 BASELINE

34.3

30.9

27.1

We customized LLMs on code changes written by a single
developer or all developers of a given organization. To avoid data
contamination, we first pre-trained and fine-tuned a deep learning
model on general code completion samples. Then, we further trained
the base model on developer-specific and organization-specific
contributions to their projects.
Our findings reveal that fine-tuning these models on personal
contributions can significantly improve the accuracy of suggestions
provided to the developers. Indeed, personalized models can infer
recurring implementation patterns and project-specific APIs that
general pre-trained model would not know.

