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LLMs have a   GENERAL KNOWLEDGE  of SE tasks

Our mission

Current situation

What’s next

Aligning LLMs to developers through RLHF Better prompting techniques for improving LLMs 

LLMs works better on  HIGH-RESOURCE  languages

We observed that in-context learning techniques 
can significantly enhance the performance of LLMs 
when applied to low-resource programming 
languages. Therefore, we intend to pursue this 
path by developing novel prompting techniques 
for LLMs and investigating state-of-the-art 
methodologies, such as Chain-of-Thought 
prompting.

Modern LLMs are often evaluated on tasks that require a general 
understanding of programming. Although the performance of these 
models has improved over time, these results do not extend to their 
usage on private projects, where these models frequently fail to 
provide accurate recommendations. Indeed, LLMs are not tailored to 
the specific consumer who uses them and thus lack knowledge of the 
developers' expertise and the projects on which they are working.

LLMs are typically trained on publicly available code, such as GitHub 
repositories, therefore favoring the most popular programming 
languages. The following graph compares the distribution of GitHub 
repositories with at least 10 stars across different programming 
languages.

We started with investigating the performance gap between high- 
and low-resource languages on state-of-the-art code models. We 
observed that some niche languages, like R and Racket, perform 
significantly worse on the same task than high-resource languages.
Therefore, we evaluated several fine-tuning and prompting 
techniques to improve LLMs' code generation capabilities on these 
low-resource languages. Our findings reveal that fine-tuning 
smaller models (~1B parameters) on additional high-quality data 
improves code generation performance. Conversely, larger models 
(≥33B parameters) benefit more from including extra features into 
the instruction prompt.

N. PARAMETERS

1 BILLION 7 BILLION >33 BILLION

Fine-tuning Mixed Prompting

371k 135k 16k 16k 6k 1k

N. REPOSITORIES

Racket repos are 
nearly nonexistent 

Although fine-tuning can help to personalize LLMs, 
more effective and efficient techniques for 
aligning code models with developer knowledge 
and expertise should be investigated. To this end, 
we intend to explore reinforcement learning 
techniques, which are commonly used for aligning 
models in NLP tasks.

 ORGANIZATION-SPECIFIC

7 14 21 28 35

AVG. ACCURACY

 DEVELOPER-SPECIFIC

 BASELINE

34.3

30.9

27.1

We customized LLMs on code changes written by a single 
developer or all developers of a given organization. To avoid data 
contamination, we first pre-trained and fine-tuned a deep learning 
model on general code completion samples. Then, we further trained 
the base model on developer-specific and organization-specific 
contributions to their projects.
Our findings reveal that fine-tuning these models on personal 
contributions can significantly improve the accuracy of suggestions 
provided to the developers. Indeed, personalized models can infer 
recurring implementation patterns and project-specific APIs that  
general pre-trained model would not know.


